
Using OpenCV, Python and Template
Matching to play “Where’s Waldo?”
by Adrian Rosebrock

Take a look at the Where’s Waldo puzzle above. How long does it take you to find Waldo? 10
seconds? 30 seconds? Over a minute?

Waldo is the ultimate game of hide and seek for the human eye. He’s actually “hiding” in plain sight
— but due to all the noise and distraction, we can’t pick him out immediately!

At the core, Waldo is just a visual pattern. He wears glasses. A hat. And his classic white and red
horizontally striped shirt. It might take us a little bit of time to scan up and down and left to right
across the page, but our brain is able to pick out this pattern, even amongst all the distraction.

The question is, can computers do better? Can we create a program that can automatically find
Waldo?

In fact, we can.

Using computer vision techniques we can find Waldo in under a second, much faster than any of us
could!

In this blog post I’ll show you how to use the OpenCV and template matching functions to find that
pesky Waldo who is always hiding in plain sight.

Here’s a quick overview of what we’re going to do:

What we’re going to do: Build a Python script using OpenCV that can find Waldo in a
“Where’s Waldo?” puzzle.
What you’ll learn: How to utilize Python, OpenCV, and template matching using
cv2.matchTemplate and cv2.minMaxLoc . Using these functions we will be able to find
Waldo in our puzzle image.
What you need: Python, NumPy, and OpenCV. A little knowledge of basic image processing
concepts would help, but is definitely not a requirement. This how-to guide is meant to be
hands on and show you how to apply template matching using OpenCV. Don’t have these
libraries installed? No problem. I created a pre-configured virtual machine with all the
necessary computer vision, image processing, and machine learning packages pre-installed.
Click here to learn more.
Assumptions: I’ll assume that you have NumPy and OpenCV installed in either the python2.6
or python2.7 environment. Again, you can download a pre-configured virtual machine with all
the necessary packages installed here.

The Goal
So what’s the overall goal of the Python script we are going to create?

The goal, given a query image of Waldo and the puzzle image, is to find Waldo in in the puzzle
image and highlight his location.

As you’ll see later in this post, we’ll be able to accomplish this in only two lines of Python code. The
rest of the code simply handles logic such as argument parsing and displaying the solved puzzle to
our screen.

Our Puzzle and Query Image
We require two images to build our Python script to perform template matching.

The first image is the Where’s Waldo puzzle that we are going to solve. You can see our puzzle image
in Figure 1 at the top of this post.

The second image is our query image of Waldo:

https://www.pyimagesearch.com/practical-python-opencv/
http://www.numpy.org/
http://opencv.org/
https://www.pyimagesearch.com/practical-python-opencv/

Using our Waldo query image we are going to find him in the original puzzle.

Unfortunately, here is where the practicality of our approach breaks down.

In order to find Waldo in our puzzle image, we first need the image of Waldo himself. And you may be
asking, if I already have the image of Waldo, why I am I playing the puzzle?

Good point.

Using computer vision and image processing techniques to find Waldo in a image is certainly
possible.

However, it requires some slightly more advanced techniques such as:

1. Filtering out colors that are not red.
2. Calculating the correlation of a striped pattern to match the red and white transitions of

Waldo’s shirt.
3. Binarization of the regions of the image that have high correlation with a striped pattern.

This post is meant to be an introduction to basic computer vision techniques such as template
matching. Later on we can dive into more advanced techniques. Where’s Waldo was just a cool and
simple way to perform template matching that I just had to share with you!

Getting Our Hands Dirty
Ready to see some code? Alright, let’s do this:

import the necessary packages
import numpy as np
import argparse
import imutils
import cv2

construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--puzzle", required = True,
 help = "Path to the puzzle image")
ap.add_argument("-w", "--waldo", required = True,
 help = "Path to the waldo image")
args = vars(ap.parse_args())

load the puzzle and waldo images
puzzle = cv2.imread(args["puzzle"])
waldo = cv2.imread(args["waldo"])
(waldoHeight, waldoWidth) = waldo.shape[:2]

Lines 1-13 simply imports the packages we are going to use and configures our argument parser.
We’ll use NumPy for array manipulations, argparse to parse our command line arguments, and
cv2 for our OpenCV bindings. The package imutils is actually a set of convenience functions to
handle basic image manipulations such as rotation, resizing, and translation. You can read more
about these types of basic image operations here.

From there, we need to setup our two command line arguments. The first, --puzzle is the path to
our Where’s Waldo puzzle image and --waldo is the path to Waldo query image.

Again, our goal here is to find the query image in the puzzle image using template matching.

Now that we have the paths to our images, we load them off of disk on Line 16 and 17 using the
cv2.imread function — this method simply reads the image off disk and then stores it as a multi-
dimensional NumPy array.

Since images are represented as NumPy arrays in OpenCV, we can easily access the dimensions of
the image. On Line 18 we grab the height and the width of the Waldo query image, respectively.

We are now ready to perform our template matching:

find the waldo in the puzzle
result = cv2.matchTemplate(puzzle, waldo, cv2.TM_CCOEFF)
(_, _, minLoc, maxLoc) = cv2.minMaxLoc(result)

We accomplish our template matching on Line 21 by using the cv2.matchTemplate function. This
method requires three parameters. The first is our puzzle image, the image that contains what we
are searching for. The second is our query image, waldo . This image is contained within the puzzle

https://www.pyimagesearch.com/2014/01/20/basic-image-manipulations-in-python-and-opencv-resizing-scaling-rotating-and-cropping/

image and we are looking to pinpoint its location. Finally, the third argument is our template matching
method. There are a variety of methods to perform template matching, but in this case we are using
the correlation coefficient which is specified by the flag cv2.TM_CCOEFF .

So what exactly is the cv2.matchTemplate function doing?

Essentially, this function takes a “sliding window” of our waldo query image and slides it across our
puzzle image from left to right and top to bottom, one pixel at a time. Then, for each of these
locations, we compute the correlation coefficient to determine how “good” or “bad” the match is.
Regions with sufficiently high correlation can be considered “matches” for our waldo template.

From there, all we need is a call to cv2.minMaxLoc on Line 22 to find where our “good” matches
are.

That’s really all there is to template matching!

And realistically, it only took us two lines of code.

The rest of our source code involves extracting the region that contains Waldo and then highlighting
him in the original puzzle image:

the puzzle image
topLeft = maxLoc
botRight = (topLeft[0] + waldoWidth, topLeft[1] + waldoHeight)
roi = puzzle[topLeft[1]:botRight[1], topLeft[0]:botRight[0]]

construct a darkened transparent 'layer' to darken everything
in the puzzle except for waldo
mask = np.zeros(puzzle.shape, dtype = "uint8")
puzzle = cv2.addWeighted(puzzle, 0.25, mask, 0.75, 0)

Line 26 grabs the top-left (x, y) coordinates of the image that contains the best match based on our
sliding window. Then, we compute the bottom-right (x, y) coordinates based on the width and height
of our waldo image on Line 27. Finally we extract this roi (Region of Interest) on Line 28.

The next step is to construct a transparent layer that darkens everything in the image but Waldo. We
do this by first initializing a mask on Line 32 with the same shape as our puzzle filled with zeros. By
filling the image with zeros we are creating an image filled with black.

In order to create the transparent effect, we use the cv2.addWeighted function on Line 33. The first
parameter is our puzzle image, and the second parameter indicates that we want it to contribute to
25% of our output image. We then supply our mask as the third parameter, allowing it to contribute
to 75% of our output image. By utilizing the cv2.addWeighted function we have been able to
create the transparency effect.

However, we still need to highlight the Waldo region! That’s simple enough:

put the original waldo back in the image so that he is
'brighter' than the rest of the image
puzzle[topLeft[1]:botRight[1], topLeft[0]:botRight[0]] = roi

display the images
cv2.imshow("Puzzle", imutils.resize(puzzle, height = 650))
cv2.imshow("Waldo", waldo)
cv2.waitKey(0)

Here we are just placing the Waldo ROI back into the original image using some NumPy array slicing
techniques on Line 37. Nothing to it.

Finally, Lines 40-42 display the results of our work by displaying our Waldo query and puzzle image
on screen and waiting for a key press.

To run our script, fire up your shell and execute the following command:

$ python find_waldo.py --puzzle puzzle.png --waldo waldo.png

When your script is finished executing you should see something like this on your screen:

We have found Waldo at the bottom-left corner of the image!

So there you have it!

Template matching using Python and OpenCV is actually quite simple. To start, you just need two
images — an image of the object you want to match and an image that contains the object. From
there, you just need to make calls to cv2.matchTemplate and cv2.minMaxLaoc . The rest is just
wrapper code to glue the output of these functions together.

Learn Computer Vision In A Single Weekend
Of course, we are only scratching the surface of computer vision and image processing. Template
matching is just the start.

Luckily, I can teach you the basics of computer vision in a single weekend.

I know, it sounds crazy.

But my method really works.

See, I just finished writing my new book, Practical Python and OpenCV. I wanted this book to be as
hands-on as possible. I wanted something that you could easily learn from, without all the rigor and

details associated with a college level computer vision and image processing course.

The bottom line is that Practical Python and OpenCV is the best, guaranteed quick start guide to
learning the fundamentals of computer vision and image processing.

Plus, I have created a downloadable Ubuntu VirtualBox virtual machine with OpenCV, PIL, mahotas,
scikit-image, scikit-learn, and many other computer vision and image processing libraries pre-
configured and pre-installed.

So go ahead, jump start your computer vision education. Don’t waste time installing
packages...invest your time learning!

To learn more about my new book and downloadable virtual machine, just click here.

This post originally appeared as a guest post on Machine Learning Mastery.

https://www.pyimagesearch.com/practical-python-opencv/?src=opencv-crash-course-waldo
http://machinelearningmastery.com/using-opencv-python-and-template-matching-to-play-wheres-waldo/

